1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
//! Graph traits and graph traversals.
//!
//! ### The `Into-` Traits
//!
//! Graph traits like [`IntoNeighbors`][in] create iterators and use the same
//! pattern that `IntoIterator` does: the trait takes a reference to a graph,
//! and produces an iterator. These traits are quite composable, but with the
//! limitation that they only use shared references to graphs.
//!
//! ### Graph Traversal
//!
//! [`Dfs`](struct.Dfs.html), [`Bfs`][bfs], [`DfsPostOrder`][dfspo] and
//! [`Topo`][topo] are basic visitors and they use “walker” methods: the
//! visitors don't hold the graph as borrowed during traversal, only for the
//! `.next()` call on the walker. They can be converted to iterators
//! through the [`Walker`][w] trait.
//!
//! There is also the callback based traversal [`depth_first_search`][dfs].
//!
//! [bfs]: struct.Bfs.html
//! [dfspo]: struct.DfsPostOrder.html
//! [topo]: struct.Topo.html
//! [dfs]: fn.depth_first_search.html
//! [w]: trait.Walker.html
//!
//! ### Other Graph Traits
//!
//! The traits are rather loosely coupled at the moment (which is intentional,
//! but will develop a bit), and there are traits missing that could be added.
//!
//! Not much is needed to be able to use the visitors on a graph. A graph
//! needs to define [`GraphBase`][gb], [`IntoNeighbors`][in] and
//! [`Visitable`][vis] as a minimum.
//!
//! [gb]: trait.GraphBase.html
//! [in]: trait.IntoNeighbors.html
//! [vis]: trait.Visitable.html
//!
//! ### Graph Trait Implementations
//!
//! The following table lists the traits that are implemented for each graph type:
//!
//! | | Graph | StableGraph | GraphMap | MatrixGraph | Csr | List |
//! | --------------------- | :---: | :---------: | :------: | :---------: | :---: | :---: |
//! | GraphBase | x | x | x | x | x | x |
//! | GraphProp | x | x | x | x | x | x |
//! | NodeCount | x | x | x | x | x | x |
//! | NodeIndexable | x | x | x | x | x | x |
//! | NodeCompactIndexable | x | | x | | x | x |
//! | EdgeCount | x | x | x | x | x | x |
//! | EdgeIndexable | x | x | x | | | |
//! | Data | x | x | x | x | x | x |
//! | IntoNodeIdentifiers | x | x | x | x | x | x |
//! | IntoNodeReferences | x | x | x | x | x | x |
//! | IntoEdgeReferences | x | x | x | x | x | x |
//! | IntoNeighbors | x | x | x | x | x | x |
//! | IntoNeighborsDirected | x | x | x | x | | |
//! | IntoEdges | x | x | x | x | x | x |
//! | IntoEdgesDirected | x | x | x | x | | |
//! | Visitable | x | x | x | x | x | x |
//! | GetAdjacencyMatrix | x | x | x | x | x | x |
// filter, reversed have their `mod` lines at the end,
// so that they can use the trait template macros
pub use self::filter::*;
pub use self::reversed::*;
#[macro_use]
mod macros;
mod dfsvisit;
mod traversal;
pub use self::dfsvisit::*;
pub use self::traversal::*;
use fixedbitset::FixedBitSet;
use std::collections::HashSet;
use std::hash::{BuildHasher, Hash};
use super::EdgeType;
use crate::prelude::Direction;
use crate::graph::IndexType;
trait_template! {
/// Base graph trait: defines the associated node identifier and
/// edge identifier types.
pub trait GraphBase {
// FIXME: We can drop this escape/nodelegate stuff in Rust 1.18
@escape [type NodeId]
@escape [type EdgeId]
@section nodelegate
/// edge identifier
type EdgeId: Copy + PartialEq;
/// node identifier
type NodeId: Copy + PartialEq;
}
}
GraphBase! {delegate_impl []}
GraphBase! {delegate_impl [['a, G], G, &'a mut G, deref]}
/// A copyable reference to a graph.
pub trait GraphRef: Copy + GraphBase {}
impl<'a, G> GraphRef for &'a G where G: GraphBase {}
trait_template! {
/// Access to the neighbors of each node
///
/// The neighbors are, depending on the graph’s edge type:
///
/// - `Directed`: All targets of edges from `a`.
/// - `Undirected`: All other endpoints of edges connected to `a`.
pub trait IntoNeighbors : GraphRef {
@section type
type Neighbors: Iterator<Item=Self::NodeId>;
@section self
/// Return an iterator of the neighbors of node `a`.
fn neighbors(self, a: Self::NodeId) -> Self::Neighbors;
}
}
IntoNeighbors! {delegate_impl []}
trait_template! {
/// Access to the neighbors of each node, through incoming or outgoing edges.
///
/// Depending on the graph’s edge type, the neighbors of a given directionality
/// are:
///
/// - `Directed`, `Outgoing`: All targets of edges from `a`.
/// - `Directed`, `Incoming`: All sources of edges to `a`.
/// - `Undirected`: All other endpoints of edges connected to `a`.
pub trait IntoNeighborsDirected : IntoNeighbors {
@section type
type NeighborsDirected: Iterator<Item=Self::NodeId>;
@section self
fn neighbors_directed(self, n: Self::NodeId, d: Direction)
-> Self::NeighborsDirected;
}
}
trait_template! {
/// Access to the edges of each node.
///
/// The edges are, depending on the graph’s edge type:
///
/// - `Directed`: All edges from `a`.
/// - `Undirected`: All edges connected to `a`, with `a` being the source of each edge.
///
/// This is an extended version of the trait `IntoNeighbors`; the former
/// only iterates over the target node identifiers, while this trait
/// yields edge references (trait [`EdgeRef`][er]).
///
/// [er]: trait.EdgeRef.html
pub trait IntoEdges : IntoEdgeReferences + IntoNeighbors {
@section type
type Edges: Iterator<Item=Self::EdgeRef>;
@section self
fn edges(self, a: Self::NodeId) -> Self::Edges;
}
}
IntoEdges! {delegate_impl []}
trait_template! {
/// Access to all edges of each node, in the specified direction.
///
/// The edges are, depending on the direction and the graph’s edge type:
///
///
/// - `Directed`, `Outgoing`: All edges from `a`.
/// - `Directed`, `Incoming`: All edges to `a`.
/// - `Undirected`, `Outgoing`: All edges connected to `a`, with `a` being the source of each edge.
/// - `Undirected`, `Incoming`: All edges connected to `a`, with `a` being the target of each edge.
///
/// This is an extended version of the trait `IntoNeighborsDirected`; the former
/// only iterates over the target node identifiers, while this trait
/// yields edge references (trait [`EdgeRef`][er]).
///
/// [er]: trait.EdgeRef.html
pub trait IntoEdgesDirected : IntoEdges + IntoNeighborsDirected {
@section type
type EdgesDirected: Iterator<Item=Self::EdgeRef>;
@section self
fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected;
}
}
IntoEdgesDirected! {delegate_impl []}
trait_template! {
/// Access to the sequence of the graph’s `NodeId`s.
pub trait IntoNodeIdentifiers : GraphRef {
@section type
type NodeIdentifiers: Iterator<Item=Self::NodeId>;
@section self
fn node_identifiers(self) -> Self::NodeIdentifiers;
}
}
IntoNodeIdentifiers! {delegate_impl []}
IntoNeighborsDirected! {delegate_impl []}
trait_template! {
/// Define associated data for nodes and edges
pub trait Data : GraphBase {
@section type
type NodeWeight;
type EdgeWeight;
}
}
Data! {delegate_impl []}
Data! {delegate_impl [['a, G], G, &'a mut G, deref]}
/// An edge reference.
///
/// Edge references are used by traits `IntoEdges` and `IntoEdgeReferences`.
pub trait EdgeRef: Copy {
type NodeId;
type EdgeId;
type Weight;
/// The source node of the edge.
fn source(&self) -> Self::NodeId;
/// The target node of the edge.
fn target(&self) -> Self::NodeId;
/// A reference to the weight of the edge.
fn weight(&self) -> &Self::Weight;
/// The edge’s identifier.
fn id(&self) -> Self::EdgeId;
}
impl<'a, N, E> EdgeRef for (N, N, &'a E)
where
N: Copy,
{
type NodeId = N;
type EdgeId = (N, N);
type Weight = E;
fn source(&self) -> N {
self.0
}
fn target(&self) -> N {
self.1
}
fn weight(&self) -> &E {
self.2
}
fn id(&self) -> (N, N) {
(self.0, self.1)
}
}
/// A node reference.
pub trait NodeRef: Copy {
type NodeId;
type Weight;
fn id(&self) -> Self::NodeId;
fn weight(&self) -> &Self::Weight;
}
trait_template! {
/// Access to the sequence of the graph’s nodes
pub trait IntoNodeReferences : Data + IntoNodeIdentifiers {
@section type
type NodeRef: NodeRef<NodeId=Self::NodeId, Weight=Self::NodeWeight>;
type NodeReferences: Iterator<Item=Self::NodeRef>;
@section self
fn node_references(self) -> Self::NodeReferences;
}
}
IntoNodeReferences! {delegate_impl []}
impl<Id> NodeRef for (Id, ())
where
Id: Copy,
{
type NodeId = Id;
type Weight = ();
fn id(&self) -> Self::NodeId {
self.0
}
fn weight(&self) -> &Self::Weight {
static DUMMY: () = ();
&DUMMY
}
}
impl<'a, Id, W> NodeRef for (Id, &'a W)
where
Id: Copy,
{
type NodeId = Id;
type Weight = W;
fn id(&self) -> Self::NodeId {
self.0
}
fn weight(&self) -> &Self::Weight {
self.1
}
}
trait_template! {
/// Access to the sequence of the graph’s edges
pub trait IntoEdgeReferences : Data + GraphRef {
@section type
type EdgeRef: EdgeRef<NodeId=Self::NodeId, EdgeId=Self::EdgeId,
Weight=Self::EdgeWeight>;
type EdgeReferences: Iterator<Item=Self::EdgeRef>;
@section self
fn edge_references(self) -> Self::EdgeReferences;
}
}
IntoEdgeReferences! {delegate_impl [] }
trait_template! {
/// Edge kind property (directed or undirected edges)
pub trait GraphProp : GraphBase {
@section type
/// The kind of edges in the graph.
type EdgeType: EdgeType;
@section nodelegate
fn is_directed(&self) -> bool {
<Self::EdgeType>::is_directed()
}
}
}
GraphProp! {delegate_impl []}
trait_template! {
/// The graph’s `NodeId`s map to indices
#[allow(clippy::needless_arbitrary_self_type)]
pub trait NodeIndexable : GraphBase {
@section self
/// Return an upper bound of the node indices in the graph
/// (suitable for the size of a bitmap).
fn node_bound(self: &Self) -> usize;
/// Convert `a` to an integer index.
fn to_index(self: &Self, a: Self::NodeId) -> usize;
/// Convert `i` to a node index. `i` must be a valid value in the graph.
fn from_index(self: &Self, i: usize) -> Self::NodeId;
}
}
NodeIndexable! {delegate_impl []}
trait_template! {
/// The graph’s `NodeId`s map to indices
#[allow(clippy::needless_arbitrary_self_type)]
pub trait EdgeIndexable : GraphBase {
@section self
/// Return an upper bound of the edge indices in the graph
/// (suitable for the size of a bitmap).
fn edge_bound(self: &Self) -> usize;
/// Convert `a` to an integer index.
fn to_index(self: &Self, a: Self::EdgeId) -> usize;
/// Convert `i` to an edge index. `i` must be a valid value in the graph.
fn from_index(self: &Self, i: usize) -> Self::EdgeId;
}
}
EdgeIndexable! {delegate_impl []}
trait_template! {
/// A graph with a known node count.
#[allow(clippy::needless_arbitrary_self_type)]
pub trait NodeCount : GraphBase {
@section self
fn node_count(self: &Self) -> usize;
}
}
NodeCount! {delegate_impl []}
trait_template! {
/// The graph’s `NodeId`s map to indices, in a range without holes.
///
/// The graph's node identifiers correspond to exactly the indices
/// `0..self.node_bound()`.
pub trait NodeCompactIndexable : NodeIndexable + NodeCount { }
}
NodeCompactIndexable! {delegate_impl []}
/// A mapping for storing the visited status for NodeId `N`.
pub trait VisitMap<N> {
/// Mark `a` as visited.
///
/// Return **true** if this is the first visit, false otherwise.
fn visit(&mut self, a: N) -> bool;
/// Return whether `a` has been visited before.
fn is_visited(&self, a: &N) -> bool;
}
impl<Ix> VisitMap<Ix> for FixedBitSet
where
Ix: IndexType,
{
fn visit(&mut self, x: Ix) -> bool {
!self.put(x.index())
}
fn is_visited(&self, x: &Ix) -> bool {
self.contains(x.index())
}
}
impl<N, S> VisitMap<N> for HashSet<N, S>
where
N: Hash + Eq,
S: BuildHasher,
{
fn visit(&mut self, x: N) -> bool {
self.insert(x)
}
fn is_visited(&self, x: &N) -> bool {
self.contains(x)
}
}
trait_template! {
/// A graph that can create a map that tracks the visited status of its nodes.
#[allow(clippy::needless_arbitrary_self_type)]
pub trait Visitable : GraphBase {
@section type
/// The associated map type
type Map: VisitMap<Self::NodeId>;
@section self
/// Create a new visitor map
fn visit_map(self: &Self) -> Self::Map;
/// Reset the visitor map (and resize to new size of graph if needed)
fn reset_map(self: &Self, map: &mut Self::Map);
}
}
Visitable! {delegate_impl []}
trait_template! {
/// Create or access the adjacency matrix of a graph.
///
/// The implementor can either create an adjacency matrix, or it can return
/// a placeholder if it has the needed representation internally.
#[allow(clippy::needless_arbitrary_self_type)]
pub trait GetAdjacencyMatrix : GraphBase {
@section type
/// The associated adjacency matrix type
type AdjMatrix;
@section self
/// Create the adjacency matrix
fn adjacency_matrix(self: &Self) -> Self::AdjMatrix;
/// Return true if there is an edge from `a` to `b`, false otherwise.
///
/// Computes in O(1) time.
fn is_adjacent(self: &Self, matrix: &Self::AdjMatrix, a: Self::NodeId, b: Self::NodeId) -> bool;
}
}
GetAdjacencyMatrix! {delegate_impl []}
trait_template! {
/// A graph with a known edge count.
#[allow(clippy::needless_arbitrary_self_type)]
pub trait EdgeCount : GraphBase {
@section self
/// Return the number of edges in the graph.
fn edge_count(self: &Self) -> usize;
}
}
EdgeCount! {delegate_impl []}
mod filter;
mod reversed;