1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
//! Graph traits and graph traversals.
//!
//! ### The `Into-` Traits
//!
//! Graph traits like [`IntoNeighbors`][in] create iterators and use the same
//! pattern that `IntoIterator` does: the trait takes a reference to a graph,
//! and produces an iterator. These traits are quite composable, but with the
//! limitation that they only use shared references to graphs.
//!
//! ### Graph Traversal
//!
//! [`Dfs`](struct.Dfs.html), [`Bfs`][bfs], [`DfsPostOrder`][dfspo] and
//! [`Topo`][topo]  are basic visitors and they use “walker” methods: the
//! visitors don't hold the graph as borrowed during traversal, only for the
//! `.next()` call on the walker. They can be converted to iterators
//! through the [`Walker`][w] trait.
//!
//! There is also the callback based traversal [`depth_first_search`][dfs].
//!
//! [bfs]: struct.Bfs.html
//! [dfspo]: struct.DfsPostOrder.html
//! [topo]: struct.Topo.html
//! [dfs]: fn.depth_first_search.html
//! [w]: trait.Walker.html
//!
//! ### Other Graph Traits
//!
//! The traits are rather loosely coupled at the moment (which is intentional,
//! but will develop a bit), and there are traits missing that could be added.
//!
//! Not much is needed to be able to use the visitors on a graph. A graph
//! needs to define [`GraphBase`][gb], [`IntoNeighbors`][in] and
//! [`Visitable`][vis] as a minimum.
//!
//! [gb]: trait.GraphBase.html
//! [in]: trait.IntoNeighbors.html
//! [vis]: trait.Visitable.html
//!
//! ### Graph Trait Implementations
//!
//! The following table lists the traits that are implemented for each graph type:
//!
//! |                       | Graph | StableGraph | GraphMap | MatrixGraph | Csr   | List  |
//! | --------------------- | :---: | :---------: | :------: | :---------: | :---: | :---: |
//! | GraphBase             | x     |  x          |    x     | x           | x     |  x    |
//! | GraphProp             | x     |  x          |    x     | x           | x     |  x    |
//! | NodeCount             | x     |  x          |    x     | x           | x     |  x    |
//! | NodeIndexable         | x     |  x          |    x     | x           | x     |  x    |
//! | NodeCompactIndexable  | x     |             |    x     |             | x     |  x    |
//! | EdgeCount             | x     |  x          |    x     | x           | x     |  x    |
//! | EdgeIndexable         | x     |  x          |    x     |             |       |       |
//! | Data                  | x     |  x          |    x     | x           | x     |  x    |
//! | IntoNodeIdentifiers   | x     |  x          |    x     | x           | x     |  x    |
//! | IntoNodeReferences    | x     |  x          |    x     | x           | x     |  x    |
//! | IntoEdgeReferences    | x     |  x          |    x     | x           | x     |  x    |
//! | IntoNeighbors         | x     |  x          |    x     | x           | x     |  x    |
//! | IntoNeighborsDirected | x     |  x          |    x     | x           |       |       |
//! | IntoEdges             | x     |  x          |    x     | x           | x     |  x    |
//! | IntoEdgesDirected     | x     |  x          |    x     | x           |       |       |
//! | Visitable             | x     |  x          |    x     | x           | x     |  x    |
//! | GetAdjacencyMatrix    | x     |  x          |    x     | x           | x     |  x    |

// filter, reversed have their `mod` lines at the end,
// so that they can use the trait template macros
pub use self::filter::*;
pub use self::reversed::*;

#[macro_use]
mod macros;

mod dfsvisit;
mod traversal;
pub use self::dfsvisit::*;
pub use self::traversal::*;

use fixedbitset::FixedBitSet;
use std::collections::HashSet;
use std::hash::{BuildHasher, Hash};

use super::EdgeType;
use crate::prelude::Direction;

use crate::graph::IndexType;

trait_template! {
/// Base graph trait: defines the associated node identifier and
/// edge identifier types.
pub trait GraphBase {
    // FIXME: We can drop this escape/nodelegate stuff in Rust 1.18
    @escape [type NodeId]
    @escape [type EdgeId]
    @section nodelegate
    /// edge identifier
    type EdgeId: Copy + PartialEq;
    /// node identifier
    type NodeId: Copy + PartialEq;
}
}

GraphBase! {delegate_impl []}
GraphBase! {delegate_impl [['a, G], G, &'a mut G, deref]}

/// A copyable reference to a graph.
pub trait GraphRef: Copy + GraphBase {}

impl<'a, G> GraphRef for &'a G where G: GraphBase {}

trait_template! {
/// Access to the neighbors of each node
///
/// The neighbors are, depending on the graph’s edge type:
///
/// - `Directed`: All targets of edges from `a`.
/// - `Undirected`: All other endpoints of edges connected to `a`.
pub trait IntoNeighbors : GraphRef {
    @section type
    type Neighbors: Iterator<Item=Self::NodeId>;
    @section self
    /// Return an iterator of the neighbors of node `a`.
    fn neighbors(self, a: Self::NodeId) -> Self::Neighbors;
}
}

IntoNeighbors! {delegate_impl []}

trait_template! {
/// Access to the neighbors of each node, through incoming or outgoing edges.
///
/// Depending on the graph’s edge type, the neighbors of a given directionality
/// are:
///
/// - `Directed`, `Outgoing`: All targets of edges from `a`.
/// - `Directed`, `Incoming`: All sources of edges to `a`.
/// - `Undirected`: All other endpoints of edges connected to `a`.
pub trait IntoNeighborsDirected : IntoNeighbors {
    @section type
    type NeighborsDirected: Iterator<Item=Self::NodeId>;
    @section self
    fn neighbors_directed(self, n: Self::NodeId, d: Direction)
        -> Self::NeighborsDirected;
}
}

trait_template! {
/// Access to the edges of each node.
///
/// The edges are, depending on the graph’s edge type:
///
/// - `Directed`: All edges from `a`.
/// - `Undirected`: All edges connected to `a`, with `a` being the source of each edge.
///
/// This is an extended version of the trait `IntoNeighbors`; the former
/// only iterates over the target node identifiers, while this trait
/// yields edge references (trait [`EdgeRef`][er]).
///
/// [er]: trait.EdgeRef.html
pub trait IntoEdges : IntoEdgeReferences + IntoNeighbors {
    @section type
    type Edges: Iterator<Item=Self::EdgeRef>;
    @section self
    fn edges(self, a: Self::NodeId) -> Self::Edges;
}
}

IntoEdges! {delegate_impl []}

trait_template! {
/// Access to all edges of each node, in the specified direction.
///
/// The edges are, depending on the direction and the graph’s edge type:
///
///
/// - `Directed`, `Outgoing`: All edges from `a`.
/// - `Directed`, `Incoming`: All edges to `a`.
/// - `Undirected`, `Outgoing`: All edges connected to `a`, with `a` being the source of each edge.
/// - `Undirected`, `Incoming`: All edges connected to `a`, with `a` being the target of each edge.
///
/// This is an extended version of the trait `IntoNeighborsDirected`; the former
/// only iterates over the target node identifiers, while this trait
/// yields edge references (trait [`EdgeRef`][er]).
///
/// [er]: trait.EdgeRef.html
pub trait IntoEdgesDirected : IntoEdges + IntoNeighborsDirected {
    @section type
    type EdgesDirected: Iterator<Item=Self::EdgeRef>;
    @section self
    fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected;
}
}

IntoEdgesDirected! {delegate_impl []}

trait_template! {
/// Access to the sequence of the graph’s `NodeId`s.
pub trait IntoNodeIdentifiers : GraphRef {
    @section type
    type NodeIdentifiers: Iterator<Item=Self::NodeId>;
    @section self
    fn node_identifiers(self) -> Self::NodeIdentifiers;
}
}

IntoNodeIdentifiers! {delegate_impl []}
IntoNeighborsDirected! {delegate_impl []}

trait_template! {
/// Define associated data for nodes and edges
pub trait Data : GraphBase {
    @section type
    type NodeWeight;
    type EdgeWeight;
}
}

Data! {delegate_impl []}
Data! {delegate_impl [['a, G], G, &'a mut G, deref]}

/// An edge reference.
///
/// Edge references are used by traits `IntoEdges` and `IntoEdgeReferences`.
pub trait EdgeRef: Copy {
    type NodeId;
    type EdgeId;
    type Weight;
    /// The source node of the edge.
    fn source(&self) -> Self::NodeId;
    /// The target node of the edge.
    fn target(&self) -> Self::NodeId;
    /// A reference to the weight of the edge.
    fn weight(&self) -> &Self::Weight;
    /// The edge’s identifier.
    fn id(&self) -> Self::EdgeId;
}

impl<'a, N, E> EdgeRef for (N, N, &'a E)
where
    N: Copy,
{
    type NodeId = N;
    type EdgeId = (N, N);
    type Weight = E;

    fn source(&self) -> N {
        self.0
    }
    fn target(&self) -> N {
        self.1
    }
    fn weight(&self) -> &E {
        self.2
    }
    fn id(&self) -> (N, N) {
        (self.0, self.1)
    }
}

/// A node reference.
pub trait NodeRef: Copy {
    type NodeId;
    type Weight;
    fn id(&self) -> Self::NodeId;
    fn weight(&self) -> &Self::Weight;
}

trait_template! {
/// Access to the sequence of the graph’s nodes
pub trait IntoNodeReferences : Data + IntoNodeIdentifiers {
    @section type
    type NodeRef: NodeRef<NodeId=Self::NodeId, Weight=Self::NodeWeight>;
    type NodeReferences: Iterator<Item=Self::NodeRef>;
    @section self
    fn node_references(self) -> Self::NodeReferences;
}
}

IntoNodeReferences! {delegate_impl []}

impl<Id> NodeRef for (Id, ())
where
    Id: Copy,
{
    type NodeId = Id;
    type Weight = ();
    fn id(&self) -> Self::NodeId {
        self.0
    }
    fn weight(&self) -> &Self::Weight {
        static DUMMY: () = ();
        &DUMMY
    }
}

impl<'a, Id, W> NodeRef for (Id, &'a W)
where
    Id: Copy,
{
    type NodeId = Id;
    type Weight = W;
    fn id(&self) -> Self::NodeId {
        self.0
    }
    fn weight(&self) -> &Self::Weight {
        self.1
    }
}

trait_template! {
/// Access to the sequence of the graph’s edges
pub trait IntoEdgeReferences : Data + GraphRef {
    @section type
    type EdgeRef: EdgeRef<NodeId=Self::NodeId, EdgeId=Self::EdgeId,
                          Weight=Self::EdgeWeight>;
    type EdgeReferences: Iterator<Item=Self::EdgeRef>;
    @section self
    fn edge_references(self) -> Self::EdgeReferences;
}
}

IntoEdgeReferences! {delegate_impl [] }

trait_template! {
    /// Edge kind property (directed or undirected edges)
pub trait GraphProp : GraphBase {
    @section type
    /// The kind of edges in the graph.
    type EdgeType: EdgeType;

    @section nodelegate
    fn is_directed(&self) -> bool {
        <Self::EdgeType>::is_directed()
    }
}
}

GraphProp! {delegate_impl []}

trait_template! {
    /// The graph’s `NodeId`s map to indices
    #[allow(clippy::needless_arbitrary_self_type)]
    pub trait NodeIndexable : GraphBase {
        @section self
        /// Return an upper bound of the node indices in the graph
        /// (suitable for the size of a bitmap).
        fn node_bound(self: &Self) -> usize;
        /// Convert `a` to an integer index.
        fn to_index(self: &Self, a: Self::NodeId) -> usize;
        /// Convert `i` to a node index. `i` must be a valid value in the graph.
        fn from_index(self: &Self, i: usize) -> Self::NodeId;
    }
}

NodeIndexable! {delegate_impl []}

trait_template! {
    /// The graph’s `NodeId`s map to indices
    #[allow(clippy::needless_arbitrary_self_type)]
    pub trait EdgeIndexable : GraphBase {
        @section self
        /// Return an upper bound of the edge indices in the graph
        /// (suitable for the size of a bitmap).
        fn edge_bound(self: &Self) -> usize;
        /// Convert `a` to an integer index.
        fn to_index(self: &Self, a: Self::EdgeId) -> usize;
        /// Convert `i` to an edge index. `i` must be a valid value in the graph.
        fn from_index(self: &Self, i: usize) -> Self::EdgeId;
    }
}

EdgeIndexable! {delegate_impl []}

trait_template! {
/// A graph with a known node count.
#[allow(clippy::needless_arbitrary_self_type)]
pub trait NodeCount : GraphBase {
    @section self
    fn node_count(self: &Self) -> usize;
}
}

NodeCount! {delegate_impl []}

trait_template! {
/// The graph’s `NodeId`s map to indices, in a range without holes.
///
/// The graph's node identifiers correspond to exactly the indices
/// `0..self.node_bound()`.
pub trait NodeCompactIndexable : NodeIndexable + NodeCount { }
}

NodeCompactIndexable! {delegate_impl []}

/// A mapping for storing the visited status for NodeId `N`.
pub trait VisitMap<N> {
    /// Mark `a` as visited.
    ///
    /// Return **true** if this is the first visit, false otherwise.
    fn visit(&mut self, a: N) -> bool;

    /// Return whether `a` has been visited before.
    fn is_visited(&self, a: &N) -> bool;
}

impl<Ix> VisitMap<Ix> for FixedBitSet
where
    Ix: IndexType,
{
    fn visit(&mut self, x: Ix) -> bool {
        !self.put(x.index())
    }
    fn is_visited(&self, x: &Ix) -> bool {
        self.contains(x.index())
    }
}

impl<N, S> VisitMap<N> for HashSet<N, S>
where
    N: Hash + Eq,
    S: BuildHasher,
{
    fn visit(&mut self, x: N) -> bool {
        self.insert(x)
    }
    fn is_visited(&self, x: &N) -> bool {
        self.contains(x)
    }
}

trait_template! {
/// A graph that can create a map that tracks the visited status of its nodes.
#[allow(clippy::needless_arbitrary_self_type)]
pub trait Visitable : GraphBase {
    @section type
    /// The associated map type
    type Map: VisitMap<Self::NodeId>;
    @section self
    /// Create a new visitor map
    fn visit_map(self: &Self) -> Self::Map;
    /// Reset the visitor map (and resize to new size of graph if needed)
    fn reset_map(self: &Self, map: &mut Self::Map);
}
}
Visitable! {delegate_impl []}

trait_template! {
/// Create or access the adjacency matrix of a graph.
///
/// The implementor can either create an adjacency matrix, or it can return
/// a placeholder if it has the needed representation internally.
#[allow(clippy::needless_arbitrary_self_type)]
pub trait GetAdjacencyMatrix : GraphBase {
    @section type
    /// The associated adjacency matrix type
    type AdjMatrix;
    @section self
    /// Create the adjacency matrix
    fn adjacency_matrix(self: &Self) -> Self::AdjMatrix;
    /// Return true if there is an edge from `a` to `b`, false otherwise.
    ///
    /// Computes in O(1) time.
    fn is_adjacent(self: &Self, matrix: &Self::AdjMatrix, a: Self::NodeId, b: Self::NodeId) -> bool;
}
}

GetAdjacencyMatrix! {delegate_impl []}

trait_template! {
/// A graph with a known edge count.
#[allow(clippy::needless_arbitrary_self_type)]
pub trait EdgeCount : GraphBase {
    @section self
    /// Return the number of edges in the graph.
    fn edge_count(self: &Self) -> usize;
}
}

EdgeCount! {delegate_impl []}

mod filter;
mod reversed;