1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
//! Minimum Spanning Tree algorithms.

use std::collections::{BinaryHeap, HashMap};

use crate::prelude::*;

use crate::data::Element;
use crate::scored::MinScored;
use crate::unionfind::UnionFind;
use crate::visit::{Data, IntoNodeReferences, NodeRef};
use crate::visit::{IntoEdgeReferences, NodeIndexable};

/// \[Generic\] Compute a *minimum spanning tree* of a graph.
///
/// The input graph is treated as if undirected.
///
/// Using Kruskal's algorithm with runtime **O(|E| log |E|)**. We actually
/// return a minimum spanning forest, i.e. a minimum spanning tree for each connected
/// component of the graph.
///
/// The resulting graph has all the vertices of the input graph (with identical node indices),
/// and **|V| - c** edges, where **c** is the number of connected components in `g`.
///
/// Use `from_elements` to create a graph from the resulting iterator.
pub fn min_spanning_tree<G>(g: G) -> MinSpanningTree<G>
where
    G::NodeWeight: Clone,
    G::EdgeWeight: Clone + PartialOrd,
    G: IntoNodeReferences + IntoEdgeReferences + NodeIndexable,
{
    // Initially each vertex is its own disjoint subgraph, track the connectedness
    // of the pre-MST with a union & find datastructure.
    let subgraphs = UnionFind::new(g.node_bound());

    let edges = g.edge_references();
    let mut sort_edges = BinaryHeap::with_capacity(edges.size_hint().0);
    for edge in edges {
        sort_edges.push(MinScored(
            edge.weight().clone(),
            (edge.source(), edge.target()),
        ));
    }

    MinSpanningTree {
        graph: g,
        node_ids: Some(g.node_references()),
        subgraphs,
        sort_edges,
        node_map: HashMap::new(),
        node_count: 0,
    }
}

/// An iterator producing a minimum spanning forest of a graph.
#[derive(Debug, Clone)]
pub struct MinSpanningTree<G>
where
    G: Data + IntoNodeReferences,
{
    graph: G,
    node_ids: Option<G::NodeReferences>,
    subgraphs: UnionFind<usize>,
    #[allow(clippy::type_complexity)]
    sort_edges: BinaryHeap<MinScored<G::EdgeWeight, (G::NodeId, G::NodeId)>>,
    node_map: HashMap<usize, usize>,
    node_count: usize,
}

impl<G> Iterator for MinSpanningTree<G>
where
    G: IntoNodeReferences + NodeIndexable,
    G::NodeWeight: Clone,
    G::EdgeWeight: PartialOrd,
{
    type Item = Element<G::NodeWeight, G::EdgeWeight>;

    fn next(&mut self) -> Option<Self::Item> {
        let g = self.graph;
        if let Some(ref mut iter) = self.node_ids {
            if let Some(node) = iter.next() {
                self.node_map.insert(g.to_index(node.id()), self.node_count);
                self.node_count += 1;
                return Some(Element::Node {
                    weight: node.weight().clone(),
                });
            }
        }
        self.node_ids = None;

        // Kruskal's algorithm.
        // Algorithm is this:
        //
        // 1. Create a pre-MST with all the vertices and no edges.
        // 2. Repeat:
        //
        //  a. Remove the shortest edge from the original graph.
        //  b. If the edge connects two disjoint trees in the pre-MST,
        //     add the edge.
        while let Some(MinScored(score, (a, b))) = self.sort_edges.pop() {
            // check if the edge would connect two disjoint parts
            let (a_index, b_index) = (g.to_index(a), g.to_index(b));
            if self.subgraphs.union(a_index, b_index) {
                let (&a_order, &b_order) =
                    match (self.node_map.get(&a_index), self.node_map.get(&b_index)) {
                        (Some(a_id), Some(b_id)) => (a_id, b_id),
                        _ => panic!("Edge references unknown node"),
                    };
                return Some(Element::Edge {
                    source: a_order,
                    target: b_order,
                    weight: score,
                });
            }
        }
        None
    }
}