1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
use std::{
    collections::{HashMap, VecDeque},
    ops::{Index, IndexMut},
};

use crate::{
    graph::{GraphIndex, NodeIndex},
    visit::{EdgeRef, GraphProp, IntoEdgeReferences},
    Directed,
};

use self::linked_list::{LinkedList, LinkedListEntry};

/// \[Generic\] Finds a [feedback arc set]: a set of edges in the given directed graph, which when
/// removed, make the graph acyclic.
///
/// Uses a [greedy heuristic algorithm] to select a small number of edges, but does not necessarily
/// find the minimum feedback arc set. Time complexity is roughly **O(|E|)** for an input graph with
/// edges **E**.
///
/// Does not consider edge/node weights when selecting edges for the feedback arc set.
///
/// Loops (edges to and from the same node) are always included in the returned set.
///
/// # Example
///
/// ```
/// # #[cfg(feature = "stable_graph")] {
/// use petgraph::{
///     algo::{greedy_feedback_arc_set, is_cyclic_directed},
///     graph::EdgeIndex,
///     stable_graph::StableGraph,
///     visit::EdgeRef,
/// };
///
/// let mut g: StableGraph<(), ()> = StableGraph::from_edges(&[
///     (0, 1),
///     (1, 2),
///     (2, 3),
///     (3, 4),
///     (4, 5),
///     (5, 0),
///     (4, 1),
///     (1, 3),
/// ]);
///
/// assert!(is_cyclic_directed(&g));
///
/// let fas: Vec<EdgeIndex> = greedy_feedback_arc_set(&g).map(|e| e.id()).collect();
///
/// // Remove edges in feedback arc set from original graph
/// for edge_id in fas {
///     g.remove_edge(edge_id);
/// }
///
/// assert!(!is_cyclic_directed(&g));
/// # }
/// ```
///
/// [feedback arc set]: https://en.wikipedia.org/wiki/Feedback_arc_set
/// [greedy heuristic algorithm]: https://doi.org/10.1016/0020-0190(93)90079-O
pub fn greedy_feedback_arc_set<G>(g: G) -> impl Iterator<Item = G::EdgeRef>
where
    G: IntoEdgeReferences + GraphProp<EdgeType = Directed>,
    G::NodeId: GraphIndex,
    G: crate::visit::NodeCount,
{
    let node_seq = good_node_sequence(g.edge_references().map(|e| {
        (
            NodeIndex::new(e.source().index()),
            NodeIndex::new(e.target().index()),
        )
    }));

    g.edge_references()
        .filter(move |e| node_seq[&e.source().index()] >= node_seq[&e.target().index()])
}

fn good_node_sequence(
    edge_refs: impl Iterator<Item = (NodeIndex<usize>, NodeIndex<usize>)>,
) -> HashMap<usize, usize> {
    let mut nodes = FasNodeContainer { nodes: Vec::new() };
    let mut buckets = Buckets {
        sinks_or_isolated: NodeLinkedList::new(),
        sources: NodeLinkedList::new(),
        bidirectional_pve_dd: Vec::new(),
        bidirectional_nve_dd: Vec::new(),
    };
    // Lookup of node indices from input graph to indices into `nodes`
    let mut graph_ix_lookup = HashMap::new();

    // Build node entries
    for (from_g_ix, to_g_ix) in edge_refs {
        let mut fas_node_entry = |g_ix: NodeIndex<usize>| -> FasNodeIndex {
            match graph_ix_lookup.get(&g_ix) {
                Some(fas_ix) => *fas_ix,
                None => {
                    let fas_ix = FasNodeIndex(nodes.nodes.len());

                    nodes.nodes.push(LinkedListEntry::new(FasNode {
                        graph_ix: g_ix,
                        out_edges: Vec::new(),
                        in_edges: Vec::new(),
                        out_degree: 0,
                        in_degree: 0,
                    }));

                    graph_ix_lookup.insert(g_ix, fas_ix);

                    fas_ix
                }
            }
        };

        let from_fas_ix = fas_node_entry(from_g_ix);
        let to_fas_ix = fas_node_entry(to_g_ix);

        nodes[from_fas_ix].data().out_edges.push(to_fas_ix);
        nodes[to_fas_ix].data().in_edges.push(from_fas_ix);
    }

    // Set initial in/out-degrees
    for entry in nodes.nodes.iter_mut() {
        let node = entry.data();
        node.out_degree = node.out_edges.len();
        node.in_degree = node.in_edges.len();
    }

    // Add nodes to initial lists
    for i in 0..nodes.nodes.len() {
        let fas_ix = FasNodeIndex(i);
        buckets
            .suitable_bucket(fas_ix, &mut nodes)
            .push_front(fas_ix, &mut nodes);
    }

    let mut s_1 = VecDeque::new();
    let mut s_2 = VecDeque::new();

    loop {
        let mut some_moved = false;

        while let Some(sink_fas_ix) = buckets.sinks_or_isolated.pop(&mut nodes) {
            some_moved = true;
            buckets.update_neighbour_node_buckets(sink_fas_ix, &mut nodes);
            s_2.push_front(nodes[sink_fas_ix].data().graph_ix);
        }

        while let Some(source_fas_ix) = buckets.sources.pop(&mut nodes) {
            some_moved = true;
            buckets.update_neighbour_node_buckets(source_fas_ix, &mut nodes);
            s_1.push_back(nodes[source_fas_ix].data().graph_ix);
        }

        if let Some(list) = buckets
            .bidirectional_pve_dd
            .iter_mut()
            .rev()
            .chain(buckets.bidirectional_nve_dd.iter_mut())
            .find(|b| b.start.is_some())
        {
            let highest_dd_fas_ix = list.pop(&mut nodes).unwrap();
            some_moved = true;
            buckets.update_neighbour_node_buckets(highest_dd_fas_ix, &mut nodes);
            s_1.push_back(nodes[highest_dd_fas_ix].data().graph_ix);

            Buckets::trim_bucket_list(&mut buckets.bidirectional_pve_dd);
            Buckets::trim_bucket_list(&mut buckets.bidirectional_nve_dd);
        }

        if !some_moved {
            break;
        }
    }

    s_1.into_iter()
        .chain(s_2)
        .enumerate()
        .map(|(seq_order, node_index)| (node_index.index(), seq_order))
        .collect()
}

type NodeLinkedList = LinkedList<FasNode, FasNodeContainer, FasNodeIndex>;

#[derive(Debug)]
struct FasNodeContainer {
    nodes: Vec<LinkedListEntry<FasNode, FasNodeIndex>>,
}

impl Index<FasNodeIndex> for FasNodeContainer {
    type Output = LinkedListEntry<FasNode, FasNodeIndex>;

    fn index(&self, index: FasNodeIndex) -> &Self::Output {
        &self.nodes[index.0]
    }
}

impl IndexMut<FasNodeIndex> for FasNodeContainer {
    fn index_mut(&mut self, index: FasNodeIndex) -> &mut Self::Output {
        &mut self.nodes[index.0]
    }
}

#[derive(Debug)]
struct Buckets {
    sinks_or_isolated: NodeLinkedList,
    sources: NodeLinkedList,
    /// Bidirectional nodes with positive-or-0 delta degree
    bidirectional_pve_dd: Vec<NodeLinkedList>,
    /// Bidirectional nodes with negative delta degree (index 0 is -1 dd, 1 is -2 etc)
    bidirectional_nve_dd: Vec<NodeLinkedList>,
}

#[derive(Clone, Copy, PartialEq, Debug)]
struct FasNodeIndex(usize);

/// Represents a node from the input graph, tracking its current delta degree
#[derive(Debug)]
struct FasNode {
    /// Node index in input graph.
    graph_ix: NodeIndex<usize>,

    /// All outward edges from this node (not removed during processing)
    out_edges: Vec<FasNodeIndex>,

    /// All inward edges from this node (not removed during processing)
    in_edges: Vec<FasNodeIndex>,

    /// Current out-degree of this node (decremented during processing as connected nodes are
    /// removed)
    out_degree: usize,

    /// Current in-degree of this node (decremented during processing as connected nodes are
    /// removed)
    in_degree: usize,
}

impl Buckets {
    fn suitable_bucket(
        &mut self,
        ix: FasNodeIndex,
        nodes: &mut FasNodeContainer,
    ) -> &mut NodeLinkedList {
        let node = nodes[ix].data();

        if node.out_degree == 0 {
            &mut self.sinks_or_isolated
        } else if node.in_degree == 0 {
            &mut self.sources
        } else {
            let delta_degree = node.out_degree as isize - node.in_degree as isize;

            if delta_degree >= 0 {
                let bucket_ix = delta_degree as usize;

                if self.bidirectional_pve_dd.len() <= bucket_ix {
                    self.bidirectional_pve_dd
                        .resize_with(bucket_ix + 1, NodeLinkedList::new);
                }

                &mut self.bidirectional_pve_dd[bucket_ix]
            } else {
                let bucket_ix = (-delta_degree - 1) as usize;

                if self.bidirectional_nve_dd.len() <= bucket_ix {
                    self.bidirectional_nve_dd
                        .resize_with(bucket_ix + 1, NodeLinkedList::new);
                }

                &mut self.bidirectional_nve_dd[bucket_ix]
            }
        }
    }

    fn update_neighbour_node_buckets(&mut self, ix: FasNodeIndex, nodes: &mut FasNodeContainer) {
        for i in 0..nodes[ix].data().out_edges.len() {
            let out_ix = nodes[ix].data().out_edges[i];

            if out_ix == ix {
                continue;
            }

            // Ignore nodes which have already been moved to the good sequence
            if !nodes[out_ix].is_in_list() {
                continue;
            }

            self.suitable_bucket(out_ix, nodes).remove(out_ix, nodes);

            // Other node has lost an in-edge; reduce in-degree by 1
            nodes[out_ix].data().in_degree -= 1;

            self.suitable_bucket(out_ix, nodes)
                .push_front(out_ix, nodes);
        }

        for i in 0..nodes[ix].data().in_edges.len() {
            let in_ix = nodes[ix].data().in_edges[i];

            if in_ix == ix {
                continue;
            }

            // Ignore nodes which have already been moved to the good sequence
            if !nodes[in_ix].is_in_list() {
                continue;
            }

            self.suitable_bucket(in_ix, nodes).remove(in_ix, nodes);

            // Other node has lost an out-edge; reduce out-degree by 1
            nodes[in_ix].data().out_degree -= 1;

            self.suitable_bucket(in_ix, nodes).push_front(in_ix, nodes);
        }
    }

    fn trim_bucket_list(list: &mut Vec<NodeLinkedList>) {
        let trunc_len = if let Some(highest_populated_index) =
            (0..list.len()).rev().find(|i| list[*i].start.is_some())
        {
            highest_populated_index + 1
        } else {
            0
        };

        list.truncate(trunc_len);
    }
}

mod linked_list {
    use std::{marker::PhantomData, ops::IndexMut};

    #[derive(PartialEq, Debug)]
    pub struct LinkedList<Data, Container, Ix> {
        pub start: Option<Ix>,
        marker: PhantomData<(Data, Container)>,
    }

    #[derive(Debug)]
    pub struct LinkedListEntry<Data, Ix> {
        pos: Option<LinkedListPosition<Ix>>,
        data: Data,
    }

    #[derive(Debug)]
    struct LinkedListPosition<Ix> {
        prev: Option<Ix>,
        next: Option<Ix>,
    }

    impl<Data, Ix> LinkedListEntry<Data, Ix> {
        pub fn new(data: Data) -> Self {
            LinkedListEntry { pos: None, data }
        }

        pub fn data(&mut self) -> &mut Data {
            &mut self.data
        }

        pub fn is_in_list(&mut self) -> bool {
            self.pos.is_some()
        }

        fn pos_mut(&mut self) -> &mut LinkedListPosition<Ix> {
            self.pos
                .as_mut()
                .expect("expected linked list entry to have populated position")
        }
    }

    impl<Data, Container, Ix> LinkedList<Data, Container, Ix>
    where
        Container: IndexMut<Ix, Output = LinkedListEntry<Data, Ix>>,
        Ix: PartialEq + Copy,
    {
        pub fn new() -> Self {
            LinkedList {
                start: None,
                marker: PhantomData,
            }
        }

        pub fn push_front(&mut self, push_ix: Ix, container: &mut Container) {
            if let Some(start_ix) = self.start {
                let entry = &mut container[start_ix];
                entry.pos_mut().prev = Some(push_ix);
            }

            let push_entry = &mut container[push_ix];
            push_entry.pos = Some(LinkedListPosition {
                next: self.start,
                prev: None,
            });

            self.start = Some(push_ix);
        }

        pub fn pop(&mut self, container: &mut Container) -> Option<Ix> {
            if let Some(remove_ix) = self.start {
                self.remove(remove_ix, container);
                Some(remove_ix)
            } else {
                None
            }
        }

        /// `remove_ix` **must** be a member of the list headed by `self`
        pub fn remove(&mut self, remove_ix: Ix, container: &mut Container) {
            debug_assert!(
                self.to_vec(container).contains(&remove_ix),
                "node to remove should be member of current linked list"
            );

            let remove_entry = &mut container[remove_ix];
            let ll_entry = remove_entry.pos.take().unwrap();

            if let Some(prev_ix) = ll_entry.prev {
                let prev_node = &mut container[prev_ix];
                prev_node.pos_mut().next = ll_entry.next;
            }

            if let Some(next_ix) = ll_entry.next {
                let next_node = &mut container[next_ix];
                next_node.pos_mut().prev = ll_entry.prev;
            }

            // If the removed node was head of the list
            if self.start == Some(remove_ix) {
                self.start = ll_entry.next;
            }
        }

        /// For debug purposes
        fn to_vec(&self, container: &mut Container) -> Vec<Ix> {
            let mut ixs = Vec::new();

            let mut node_ix = self.start;

            while let Some(n_ix) = node_ix {
                ixs.push(n_ix);

                node_ix = container[n_ix].pos_mut().next;
            }

            ixs
        }
    }
}