os_pipe/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//! A cross-platform library for opening OS pipes, like those from
//! [`pipe`](https://man7.org/linux/man-pages/man2/pipe.2.html) on Linux
//! or
//! [`CreatePipe`](https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe)
//! on Windows. The Rust standard library provides
//! [`Stdio::piped`](https://doc.rust-lang.org/std/process/struct.Stdio.html#method.piped)
//! for simple use cases involving child processes, but it doesn't
//! support creating pipes directly. This crate fills that gap.
//!
//! - [Docs](https://docs.rs/os_pipe)
//! - [Crate](https://crates.io/crates/os_pipe)
//! - [Repo](https://github.com/oconnor663/os_pipe.rs)
//!
//! # Common deadlocks related to pipes
//!
//! When you work with pipes, you often end up debugging a deadlock at
//! some point. These can be confusing if you don't know why they
//! happen. Here are two things you need to know:
//!
//! 1. Pipe reads will block waiting for input as long as there's at
//!    least one writer still open. **If you forget to close a writer,
//!    reads will block forever.** This includes writers that you give
//!    to child processes.
//! 2. Pipes have an internal buffer of some fixed size. On Linux for
//!    example, pipe buffers are 64 KiB by default. When the buffer is
//!    full, writes will block waiting for space. **If the buffer is
//!    full and there aren't any readers, writes will block forever.**
//!
//! Deadlocks caused by a forgotten writer usually show up immediately,
//! which makes them relatively easy to fix once you know what to look
//! for. (See "Avoid a deadlock!" in the example code below.) However,
//! deadlocks caused by full pipe buffers are trickier. These might only
//! show up for larger inputs, and they might be timing-dependent or
//! platform-dependent. If you find that writing to a pipe deadlocks
//! sometimes, think about who's supposed to be reading from that pipe,
//! and whether that thread or process might be blocked on something
//! else. For more on this, see the [Gotchas
//! Doc](https://github.com/oconnor663/duct.py/blob/master/gotchas.md#using-io-threads-to-avoid-blocking-children)
//! from the [`duct`](https://github.com/oconnor663/duct.rs) crate. (And
//! consider whether [`duct`](https://github.com/oconnor663/duct.rs)
//! might be a good fit for your use case.)
//!
//! # Examples
//!
//! Here we write a single byte into a pipe and read it back out:
//!
//! ```rust
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use std::io::prelude::*;
//!
//! let (mut reader, mut writer) = os_pipe::pipe()?;
//! // XXX: If this write blocks, we'll never get to the read.
//! writer.write_all(b"x")?;
//! let mut output = [0];
//! reader.read_exact(&mut output)?;
//! assert_eq!(b"x", &output);
//! # Ok(())
//! # }
//! ```
//!
//! This is a minimal working example, but as discussed in the section
//! above, reading and writing on the same thread like this is
//! deadlock-prone. If we wrote 100 KB instead of just one byte, this
//! example would block on `write_all`, it would never make it to
//! `read_exact`, and that would be a deadlock. Doing the read and write
//! from different threads or different processes would fix the
//! deadlock.
//!
//! For a more complex example, here we join the stdout and stderr of a
//! child process into a single pipe. To do that we open a pipe, clone
//! its writer, and set that pair of writers as the child's stdout and
//! stderr. (This is possible because `PipeWriter` implements
//! `Into<Stdio>`.) Then we can read interleaved output from the pipe
//! reader. This example is deadlock-free, but note the comment about
//! closing the writers.
//!
//! ```rust
//! # use std::io::prelude::*;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // We're going to spawn a child process that prints "foo" to stdout
//! // and "bar" to stderr, and we'll combine these into a single pipe.
//! let mut command = std::process::Command::new("python");
//! command.args(&["-c", r#"
//! import sys
//! sys.stdout.write("foo")
//! sys.stdout.flush()
//! sys.stderr.write("bar")
//! sys.stderr.flush()
//! "#]);
//!
//! // Here's the interesting part. Open a pipe, clone its writer, and
//! // set that pair of writers as the child's stdout and stderr.
//! let (mut reader, writer) = os_pipe::pipe()?;
//! let writer_clone = writer.try_clone()?;
//! command.stdout(writer);
//! command.stderr(writer_clone);
//!
//! // Now start the child process running.
//! let mut handle = command.spawn()?;
//!
//! // Avoid a deadlock! This parent process is still holding open pipe
//! // writers inside the Command object, and we have to close those
//! // before we read. Here we do this by dropping the Command object.
//! drop(command);
//!
//! // Finally we can read all the output and clean up the child.
//! let mut output = String::new();
//! reader.read_to_string(&mut output)?;
//! handle.wait()?;
//! assert_eq!(output, "foobar");
//! # Ok(())
//! # }
//! ```
//!
//! Note that the [`duct`](https://github.com/oconnor663/duct.rs) crate
//! can reproduce the example above in a single line of code, with no
//! risk of deadlocks and no risk of leaking [zombie
//! children](https://en.wikipedia.org/wiki/Zombie_process).

use std::fs::File;
use std::io;
use std::process::Stdio;

#[cfg(not(windows))]
#[path = "unix.rs"]
mod sys;
#[cfg(windows)]
#[path = "windows.rs"]
mod sys;

/// The reading end of a pipe, returned by [`pipe`](fn.pipe.html).
///
/// `PipeReader` implements `Into<Stdio>`, so you can pass it as an argument to
/// `Command::stdin` to spawn a child process that reads from the pipe.
#[derive(Debug)]
pub struct PipeReader(
    // We use std::fs::File here for two reasons: OwnedFd and OwnedHandle are platform-specific,
    // and this gives us read/write/flush for free.
    File,
);

impl PipeReader {
    pub fn try_clone(&self) -> io::Result<PipeReader> {
        self.0.try_clone().map(PipeReader)
    }
}

impl io::Read for PipeReader {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.0.read(buf)
    }
}

impl<'a> io::Read for &'a PipeReader {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        (&self.0).read(buf)
    }
}

impl From<PipeReader> for Stdio {
    fn from(p: PipeReader) -> Stdio {
        p.0.into()
    }
}

/// The writing end of a pipe, returned by [`pipe`](fn.pipe.html).
///
/// `PipeWriter` implements `Into<Stdio>`, so you can pass it as an argument to
/// `Command::stdout` or `Command::stderr` to spawn a child process that writes
/// to the pipe.
#[derive(Debug)]
pub struct PipeWriter(File);

impl PipeWriter {
    pub fn try_clone(&self) -> io::Result<PipeWriter> {
        self.0.try_clone().map(PipeWriter)
    }
}

impl io::Write for PipeWriter {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.0.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.0.flush()
    }
}

impl<'a> io::Write for &'a PipeWriter {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        (&self.0).write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        (&self.0).flush()
    }
}

impl From<PipeWriter> for Stdio {
    fn from(p: PipeWriter) -> Stdio {
        p.0.into()
    }
}

/// Open a new pipe and return a [`PipeReader`] and [`PipeWriter`] pair.
///
/// This corresponds to the `pipe2` library call on Posix and the
/// `CreatePipe` library call on Windows (though these implementation
/// details might change). These pipes are non-inheritable, so new child
/// processes won't receive a copy of them unless they're explicitly
/// passed as stdin/stdout/stderr.
///
/// [`PipeReader`]: struct.PipeReader.html
/// [`PipeWriter`]: struct.PipeWriter.html
pub fn pipe() -> io::Result<(PipeReader, PipeWriter)> {
    sys::pipe()
}

/// Get a duplicated copy of the current process's standard input, as a
/// [`PipeReader`].
///
/// Reading directly from this pipe isn't recommended, because it's not
/// synchronized with [`std::io::stdin`]. [`PipeReader`] implements
/// [`Into<Stdio>`], so it can be passed directly to [`Command::stdin`]. This is
/// equivalent to [`Stdio::inherit`], though, so it's usually not necessary
/// unless you need a collection of different pipes.
///
/// [`std::io::stdin`]: https://doc.rust-lang.org/std/io/fn.stdin.html
/// [`PipeReader`]: struct.PipeReader.html
/// [`Into<Stdio>`]: https://doc.rust-lang.org/std/process/struct.Stdio.html
/// [`Command::stdin`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stdin
/// [`Stdio::inherit`]: https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
pub fn dup_stdin() -> io::Result<PipeReader> {
    sys::dup(io::stdin()).map(PipeReader::from)
}

/// Get a duplicated copy of the current process's standard output, as a
/// [`PipeWriter`](struct.PipeWriter.html).
///
/// Writing directly to this pipe isn't recommended, because it's not
/// synchronized with [`std::io::stdout`]. [`PipeWriter`] implements
/// [`Into<Stdio>`], so it can be passed directly to [`Command::stdout`] or
/// [`Command::stderr`]. This can be useful if you want the child's stderr to go
/// to the parent's stdout.
///
/// [`std::io::stdout`]: https://doc.rust-lang.org/std/io/fn.stdout.html
/// [`PipeWriter`]: struct.PipeWriter.html
/// [`Into<Stdio>`]: https://doc.rust-lang.org/std/process/struct.Stdio.html
/// [`Command::stdout`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stdout
/// [`Command::stderr`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stderr
/// [`Stdio::inherit`]: https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
pub fn dup_stdout() -> io::Result<PipeWriter> {
    sys::dup(io::stdout()).map(PipeWriter::from)
}

/// Get a duplicated copy of the current process's standard error, as a
/// [`PipeWriter`](struct.PipeWriter.html).
///
/// Writing directly to this pipe isn't recommended, because it's not
/// synchronized with [`std::io::stderr`]. [`PipeWriter`] implements
/// [`Into<Stdio>`], so it can be passed directly to [`Command::stdout`] or
/// [`Command::stderr`]. This can be useful if you want the child's stdout to go
/// to the parent's stderr.
///
/// [`std::io::stderr`]: https://doc.rust-lang.org/std/io/fn.stderr.html
/// [`PipeWriter`]: struct.PipeWriter.html
/// [`Into<Stdio>`]: https://doc.rust-lang.org/std/process/struct.Stdio.html
/// [`Command::stdout`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stdout
/// [`Command::stderr`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stderr
/// [`Stdio::inherit`]: https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
pub fn dup_stderr() -> io::Result<PipeWriter> {
    sys::dup(io::stderr()).map(PipeWriter::from)
}

#[cfg(test)]
mod tests {
    use std::env::consts::EXE_EXTENSION;
    use std::io::prelude::*;
    use std::path::{Path, PathBuf};
    use std::process::Command;
    use std::sync::Once;
    use std::thread;

    fn path_to_exe(name: &str) -> PathBuf {
        // This project defines some associated binaries for testing, and we shell out to them in
        // these tests. `cargo test` doesn't automatically build associated binaries, so this
        // function takes care of building them explicitly, with the right debug/release flavor.
        static CARGO_BUILD_ONCE: Once = Once::new();
        CARGO_BUILD_ONCE.call_once(|| {
            let mut build_command = Command::new("cargo");
            build_command.args(&["build", "--quiet"]);
            if !cfg!(debug_assertions) {
                build_command.arg("--release");
            }
            let build_status = build_command.status().unwrap();
            assert!(
                build_status.success(),
                "Cargo failed to build associated binaries."
            );
        });
        let flavor = if cfg!(debug_assertions) {
            "debug"
        } else {
            "release"
        };
        Path::new("target")
            .join(flavor)
            .join(name)
            .with_extension(EXE_EXTENSION)
    }

    #[test]
    fn test_pipe_some_data() {
        let (mut reader, mut writer) = crate::pipe().unwrap();
        // A small write won't fill the pipe buffer, so it won't block this thread.
        writer.write_all(b"some stuff").unwrap();
        drop(writer);
        let mut out = String::new();
        reader.read_to_string(&mut out).unwrap();
        assert_eq!(out, "some stuff");
    }

    #[test]
    fn test_pipe_some_data_with_refs() {
        // As with `File`, there's a second set of impls for shared
        // refs. Test those.
        let (reader, writer) = crate::pipe().unwrap();
        let mut reader_ref = &reader;
        {
            let mut writer_ref = &writer;
            // A small write won't fill the pipe buffer, so it won't block this thread.
            writer_ref.write_all(b"some stuff").unwrap();
        }
        drop(writer);
        let mut out = String::new();
        reader_ref.read_to_string(&mut out).unwrap();
        assert_eq!(out, "some stuff");
    }

    #[test]
    fn test_pipe_no_data() {
        let (mut reader, writer) = crate::pipe().unwrap();
        drop(writer);
        let mut out = String::new();
        reader.read_to_string(&mut out).unwrap();
        assert_eq!(out, "");
    }

    #[test]
    fn test_pipe_a_megabyte_of_data_from_another_thread() {
        let data = vec![0xff; 1_000_000];
        let data_copy = data.clone();
        let (mut reader, mut writer) = crate::pipe().unwrap();
        let joiner = thread::spawn(move || {
            writer.write_all(&data_copy).unwrap();
            // This drop happens automatically, so writing it out here is mostly
            // just for clarity. For what it's worth, it also guards against
            // accidentally forgetting to drop if we switch to scoped threads or
            // something like that and change this to a non-moving closure. The
            // explicit drop forces `writer` to move.
            drop(writer);
        });
        let mut out = Vec::new();
        reader.read_to_end(&mut out).unwrap();
        joiner.join().unwrap();
        assert_eq!(out, data);
    }

    #[test]
    fn test_pipes_are_not_inheritable() {
        // Create pipes for a child process.
        let (input_reader, mut input_writer) = crate::pipe().unwrap();
        let (mut output_reader, output_writer) = crate::pipe().unwrap();

        // Create a bunch of duplicated copies, which we'll close later. This
        // tests that duplication preserves non-inheritability.
        let ir_dup = input_reader.try_clone().unwrap();
        let iw_dup = input_writer.try_clone().unwrap();
        let or_dup = output_reader.try_clone().unwrap();
        let ow_dup = output_writer.try_clone().unwrap();

        // Spawn the child. Note that this temporary Command object takes
        // ownership of our copies of the child's stdin and stdout, and then
        // closes them immediately when it drops. That stops us from blocking
        // our own read below. We use our own simple implementation of cat for
        // compatibility with Windows.
        let mut child = Command::new(path_to_exe("cat"))
            .stdin(input_reader)
            .stdout(output_writer)
            .spawn()
            .unwrap();

        // Drop all the dups now that the child is spawned.
        drop(ir_dup);
        drop(iw_dup);
        drop(or_dup);
        drop(ow_dup);

        // Write to the child's stdin. This is a small write, so it shouldn't
        // block.
        input_writer.write_all(b"hello").unwrap();
        drop(input_writer);

        // Read from the child's stdout. If this child has accidentally
        // inherited the write end of its own stdin, then it will never exit,
        // and this read will block forever. That's what this test is all
        // about.
        let mut output = Vec::new();
        output_reader.read_to_end(&mut output).unwrap();
        child.wait().unwrap();

        // Confirm that we got the right bytes.
        assert_eq!(b"hello", &*output);
    }

    #[test]
    fn test_parent_handles() {
        // This test invokes the `swap` test program, which uses parent_stdout() and
        // parent_stderr() to swap the outputs for another child that it spawns.

        // Create pipes for a child process.
        let (reader, mut writer) = crate::pipe().unwrap();

        // Write input. This shouldn't block because it's small. Then close the write end, or else
        // the child will hang.
        writer.write_all(b"quack").unwrap();
        drop(writer);

        // Use `swap` to run `cat_both`. `cat_both will read "quack" from stdin
        // and write it to stdout and stderr with different tags. But because we
        // run it inside `swap`, the tags in the output should be backwards.
        let output = Command::new(path_to_exe("swap"))
            .arg(path_to_exe("cat_both"))
            .stdin(reader)
            .output()
            .unwrap();

        // Check for a clean exit.
        assert!(
            output.status.success(),
            "child process returned {:#?}",
            output
        );

        // Confirm that we got the right bytes.
        assert_eq!(b"stderr: quack", &*output.stdout);
        assert_eq!(b"stdout: quack", &*output.stderr);
    }

    #[test]
    fn test_parent_handles_dont_close() {
        // Open and close each parent pipe multiple times. If this closes the
        // original, subsequent opens should fail.
        let stdin = crate::dup_stdin().unwrap();
        drop(stdin);
        let stdin = crate::dup_stdin().unwrap();
        drop(stdin);

        let stdout = crate::dup_stdout().unwrap();
        drop(stdout);
        let stdout = crate::dup_stdout().unwrap();
        drop(stdout);

        let stderr = crate::dup_stderr().unwrap();
        drop(stderr);
        let stderr = crate::dup_stderr().unwrap();
        drop(stderr);
    }

    #[test]
    fn test_try_clone() {
        let (reader, writer) = crate::pipe().unwrap();
        let mut reader_clone = reader.try_clone().unwrap();
        let mut writer_clone = writer.try_clone().unwrap();
        // A small write won't fill the pipe buffer, so it won't block this thread.
        writer_clone.write_all(b"some stuff").unwrap();
        drop(writer);
        drop(writer_clone);
        let mut out = String::new();
        reader_clone.read_to_string(&mut out).unwrap();
        assert_eq!(out, "some stuff");
    }

    #[test]
    fn test_debug() {
        let (reader, writer) = crate::pipe().unwrap();
        _ = format!("{:?} {:?}", reader, writer);
    }
}