os_pipe/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
//! A cross-platform library for opening OS pipes, like those from
//! [`pipe`](https://man7.org/linux/man-pages/man2/pipe.2.html) on Linux
//! or
//! [`CreatePipe`](https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe)
//! on Windows. The Rust standard library provides
//! [`Stdio::piped`](https://doc.rust-lang.org/std/process/struct.Stdio.html#method.piped)
//! for simple use cases involving child processes, but it doesn't
//! support creating pipes directly. This crate fills that gap.
//!
//! - [Docs](https://docs.rs/os_pipe)
//! - [Crate](https://crates.io/crates/os_pipe)
//! - [Repo](https://github.com/oconnor663/os_pipe.rs)
//!
//! # Common deadlocks related to pipes
//!
//! When you work with pipes, you often end up debugging a deadlock at
//! some point. These can be confusing if you don't know why they
//! happen. Here are two things you need to know:
//!
//! 1. Pipe reads will block waiting for input as long as there's at
//! least one writer still open. **If you forget to close a writer,
//! reads will block forever.** This includes writers that you give
//! to child processes.
//! 2. Pipes have an internal buffer of some fixed size. On Linux for
//! example, pipe buffers are 64 KiB by default. When the buffer is
//! full, writes will block waiting for space. **If the buffer is
//! full and there aren't any readers, writes will block forever.**
//!
//! Deadlocks caused by a forgotten writer usually show up immediately,
//! which makes them relatively easy to fix once you know what to look
//! for. (See "Avoid a deadlock!" in the example code below.) However,
//! deadlocks caused by full pipe buffers are trickier. These might only
//! show up for larger inputs, and they might be timing-dependent or
//! platform-dependent. If you find that writing to a pipe deadlocks
//! sometimes, think about who's supposed to be reading from that pipe,
//! and whether that thread or process might be blocked on something
//! else. For more on this, see the [Gotchas
//! Doc](https://github.com/oconnor663/duct.py/blob/master/gotchas.md#using-io-threads-to-avoid-blocking-children)
//! from the [`duct`](https://github.com/oconnor663/duct.rs) crate. (And
//! consider whether [`duct`](https://github.com/oconnor663/duct.rs)
//! might be a good fit for your use case.)
//!
//! # Examples
//!
//! Here we write a single byte into a pipe and read it back out:
//!
//! ```rust
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use std::io::prelude::*;
//!
//! let (mut reader, mut writer) = os_pipe::pipe()?;
//! // XXX: If this write blocks, we'll never get to the read.
//! writer.write_all(b"x")?;
//! let mut output = [0];
//! reader.read_exact(&mut output)?;
//! assert_eq!(b"x", &output);
//! # Ok(())
//! # }
//! ```
//!
//! This is a minimal working example, but as discussed in the section
//! above, reading and writing on the same thread like this is
//! deadlock-prone. If we wrote 100 KB instead of just one byte, this
//! example would block on `write_all`, it would never make it to
//! `read_exact`, and that would be a deadlock. Doing the read and write
//! from different threads or different processes would fix the
//! deadlock.
//!
//! For a more complex example, here we join the stdout and stderr of a
//! child process into a single pipe. To do that we open a pipe, clone
//! its writer, and set that pair of writers as the child's stdout and
//! stderr. (This is possible because `PipeWriter` implements
//! `Into<Stdio>`.) Then we can read interleaved output from the pipe
//! reader. This example is deadlock-free, but note the comment about
//! closing the writers.
//!
//! ```rust
//! # use std::io::prelude::*;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // We're going to spawn a child process that prints "foo" to stdout
//! // and "bar" to stderr, and we'll combine these into a single pipe.
//! let mut command = std::process::Command::new("python");
//! command.args(&["-c", r#"
//! import sys
//! sys.stdout.write("foo")
//! sys.stdout.flush()
//! sys.stderr.write("bar")
//! sys.stderr.flush()
//! "#]);
//!
//! // Here's the interesting part. Open a pipe, clone its writer, and
//! // set that pair of writers as the child's stdout and stderr.
//! let (mut reader, writer) = os_pipe::pipe()?;
//! let writer_clone = writer.try_clone()?;
//! command.stdout(writer);
//! command.stderr(writer_clone);
//!
//! // Now start the child process running.
//! let mut handle = command.spawn()?;
//!
//! // Avoid a deadlock! This parent process is still holding open pipe
//! // writers inside the Command object, and we have to close those
//! // before we read. Here we do this by dropping the Command object.
//! drop(command);
//!
//! // Finally we can read all the output and clean up the child.
//! let mut output = String::new();
//! reader.read_to_string(&mut output)?;
//! handle.wait()?;
//! assert_eq!(output, "foobar");
//! # Ok(())
//! # }
//! ```
//!
//! Note that the [`duct`](https://github.com/oconnor663/duct.rs) crate
//! can reproduce the example above in a single line of code, with no
//! risk of deadlocks and no risk of leaking [zombie
//! children](https://en.wikipedia.org/wiki/Zombie_process).
use std::fs::File;
use std::io;
use std::process::Stdio;
#[cfg(not(windows))]
#[path = "unix.rs"]
mod sys;
#[cfg(windows)]
#[path = "windows.rs"]
mod sys;
/// The reading end of a pipe, returned by [`pipe`](fn.pipe.html).
///
/// `PipeReader` implements `Into<Stdio>`, so you can pass it as an argument to
/// `Command::stdin` to spawn a child process that reads from the pipe.
#[derive(Debug)]
pub struct PipeReader(
// We use std::fs::File here for two reasons: OwnedFd and OwnedHandle are platform-specific,
// and this gives us read/write/flush for free.
File,
);
impl PipeReader {
pub fn try_clone(&self) -> io::Result<PipeReader> {
self.0.try_clone().map(PipeReader)
}
}
impl io::Read for PipeReader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.0.read(buf)
}
}
impl<'a> io::Read for &'a PipeReader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(&self.0).read(buf)
}
}
impl From<PipeReader> for Stdio {
fn from(p: PipeReader) -> Stdio {
p.0.into()
}
}
/// The writing end of a pipe, returned by [`pipe`](fn.pipe.html).
///
/// `PipeWriter` implements `Into<Stdio>`, so you can pass it as an argument to
/// `Command::stdout` or `Command::stderr` to spawn a child process that writes
/// to the pipe.
#[derive(Debug)]
pub struct PipeWriter(File);
impl PipeWriter {
pub fn try_clone(&self) -> io::Result<PipeWriter> {
self.0.try_clone().map(PipeWriter)
}
}
impl io::Write for PipeWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.0.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.0.flush()
}
}
impl<'a> io::Write for &'a PipeWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(&self.0).write(buf)
}
fn flush(&mut self) -> io::Result<()> {
(&self.0).flush()
}
}
impl From<PipeWriter> for Stdio {
fn from(p: PipeWriter) -> Stdio {
p.0.into()
}
}
/// Open a new pipe and return a [`PipeReader`] and [`PipeWriter`] pair.
///
/// This corresponds to the `pipe2` library call on Posix and the
/// `CreatePipe` library call on Windows (though these implementation
/// details might change). These pipes are non-inheritable, so new child
/// processes won't receive a copy of them unless they're explicitly
/// passed as stdin/stdout/stderr.
///
/// [`PipeReader`]: struct.PipeReader.html
/// [`PipeWriter`]: struct.PipeWriter.html
pub fn pipe() -> io::Result<(PipeReader, PipeWriter)> {
sys::pipe()
}
/// Get a duplicated copy of the current process's standard input, as a
/// [`PipeReader`].
///
/// Reading directly from this pipe isn't recommended, because it's not
/// synchronized with [`std::io::stdin`]. [`PipeReader`] implements
/// [`Into<Stdio>`], so it can be passed directly to [`Command::stdin`]. This is
/// equivalent to [`Stdio::inherit`], though, so it's usually not necessary
/// unless you need a collection of different pipes.
///
/// [`std::io::stdin`]: https://doc.rust-lang.org/std/io/fn.stdin.html
/// [`PipeReader`]: struct.PipeReader.html
/// [`Into<Stdio>`]: https://doc.rust-lang.org/std/process/struct.Stdio.html
/// [`Command::stdin`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stdin
/// [`Stdio::inherit`]: https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
pub fn dup_stdin() -> io::Result<PipeReader> {
sys::dup(io::stdin()).map(PipeReader::from)
}
/// Get a duplicated copy of the current process's standard output, as a
/// [`PipeWriter`](struct.PipeWriter.html).
///
/// Writing directly to this pipe isn't recommended, because it's not
/// synchronized with [`std::io::stdout`]. [`PipeWriter`] implements
/// [`Into<Stdio>`], so it can be passed directly to [`Command::stdout`] or
/// [`Command::stderr`]. This can be useful if you want the child's stderr to go
/// to the parent's stdout.
///
/// [`std::io::stdout`]: https://doc.rust-lang.org/std/io/fn.stdout.html
/// [`PipeWriter`]: struct.PipeWriter.html
/// [`Into<Stdio>`]: https://doc.rust-lang.org/std/process/struct.Stdio.html
/// [`Command::stdout`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stdout
/// [`Command::stderr`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stderr
/// [`Stdio::inherit`]: https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
pub fn dup_stdout() -> io::Result<PipeWriter> {
sys::dup(io::stdout()).map(PipeWriter::from)
}
/// Get a duplicated copy of the current process's standard error, as a
/// [`PipeWriter`](struct.PipeWriter.html).
///
/// Writing directly to this pipe isn't recommended, because it's not
/// synchronized with [`std::io::stderr`]. [`PipeWriter`] implements
/// [`Into<Stdio>`], so it can be passed directly to [`Command::stdout`] or
/// [`Command::stderr`]. This can be useful if you want the child's stdout to go
/// to the parent's stderr.
///
/// [`std::io::stderr`]: https://doc.rust-lang.org/std/io/fn.stderr.html
/// [`PipeWriter`]: struct.PipeWriter.html
/// [`Into<Stdio>`]: https://doc.rust-lang.org/std/process/struct.Stdio.html
/// [`Command::stdout`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stdout
/// [`Command::stderr`]: https://doc.rust-lang.org/std/process/struct.Command.html#method.stderr
/// [`Stdio::inherit`]: https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
pub fn dup_stderr() -> io::Result<PipeWriter> {
sys::dup(io::stderr()).map(PipeWriter::from)
}
#[cfg(test)]
mod tests {
use std::env::consts::EXE_EXTENSION;
use std::io::prelude::*;
use std::path::{Path, PathBuf};
use std::process::Command;
use std::sync::Once;
use std::thread;
fn path_to_exe(name: &str) -> PathBuf {
// This project defines some associated binaries for testing, and we shell out to them in
// these tests. `cargo test` doesn't automatically build associated binaries, so this
// function takes care of building them explicitly, with the right debug/release flavor.
static CARGO_BUILD_ONCE: Once = Once::new();
CARGO_BUILD_ONCE.call_once(|| {
let mut build_command = Command::new("cargo");
build_command.args(&["build", "--quiet"]);
if !cfg!(debug_assertions) {
build_command.arg("--release");
}
let build_status = build_command.status().unwrap();
assert!(
build_status.success(),
"Cargo failed to build associated binaries."
);
});
let flavor = if cfg!(debug_assertions) {
"debug"
} else {
"release"
};
Path::new("target")
.join(flavor)
.join(name)
.with_extension(EXE_EXTENSION)
}
#[test]
fn test_pipe_some_data() {
let (mut reader, mut writer) = crate::pipe().unwrap();
// A small write won't fill the pipe buffer, so it won't block this thread.
writer.write_all(b"some stuff").unwrap();
drop(writer);
let mut out = String::new();
reader.read_to_string(&mut out).unwrap();
assert_eq!(out, "some stuff");
}
#[test]
fn test_pipe_some_data_with_refs() {
// As with `File`, there's a second set of impls for shared
// refs. Test those.
let (reader, writer) = crate::pipe().unwrap();
let mut reader_ref = &reader;
{
let mut writer_ref = &writer;
// A small write won't fill the pipe buffer, so it won't block this thread.
writer_ref.write_all(b"some stuff").unwrap();
}
drop(writer);
let mut out = String::new();
reader_ref.read_to_string(&mut out).unwrap();
assert_eq!(out, "some stuff");
}
#[test]
fn test_pipe_no_data() {
let (mut reader, writer) = crate::pipe().unwrap();
drop(writer);
let mut out = String::new();
reader.read_to_string(&mut out).unwrap();
assert_eq!(out, "");
}
#[test]
fn test_pipe_a_megabyte_of_data_from_another_thread() {
let data = vec![0xff; 1_000_000];
let data_copy = data.clone();
let (mut reader, mut writer) = crate::pipe().unwrap();
let joiner = thread::spawn(move || {
writer.write_all(&data_copy).unwrap();
// This drop happens automatically, so writing it out here is mostly
// just for clarity. For what it's worth, it also guards against
// accidentally forgetting to drop if we switch to scoped threads or
// something like that and change this to a non-moving closure. The
// explicit drop forces `writer` to move.
drop(writer);
});
let mut out = Vec::new();
reader.read_to_end(&mut out).unwrap();
joiner.join().unwrap();
assert_eq!(out, data);
}
#[test]
fn test_pipes_are_not_inheritable() {
// Create pipes for a child process.
let (input_reader, mut input_writer) = crate::pipe().unwrap();
let (mut output_reader, output_writer) = crate::pipe().unwrap();
// Create a bunch of duplicated copies, which we'll close later. This
// tests that duplication preserves non-inheritability.
let ir_dup = input_reader.try_clone().unwrap();
let iw_dup = input_writer.try_clone().unwrap();
let or_dup = output_reader.try_clone().unwrap();
let ow_dup = output_writer.try_clone().unwrap();
// Spawn the child. Note that this temporary Command object takes
// ownership of our copies of the child's stdin and stdout, and then
// closes them immediately when it drops. That stops us from blocking
// our own read below. We use our own simple implementation of cat for
// compatibility with Windows.
let mut child = Command::new(path_to_exe("cat"))
.stdin(input_reader)
.stdout(output_writer)
.spawn()
.unwrap();
// Drop all the dups now that the child is spawned.
drop(ir_dup);
drop(iw_dup);
drop(or_dup);
drop(ow_dup);
// Write to the child's stdin. This is a small write, so it shouldn't
// block.
input_writer.write_all(b"hello").unwrap();
drop(input_writer);
// Read from the child's stdout. If this child has accidentally
// inherited the write end of its own stdin, then it will never exit,
// and this read will block forever. That's what this test is all
// about.
let mut output = Vec::new();
output_reader.read_to_end(&mut output).unwrap();
child.wait().unwrap();
// Confirm that we got the right bytes.
assert_eq!(b"hello", &*output);
}
#[test]
fn test_parent_handles() {
// This test invokes the `swap` test program, which uses parent_stdout() and
// parent_stderr() to swap the outputs for another child that it spawns.
// Create pipes for a child process.
let (reader, mut writer) = crate::pipe().unwrap();
// Write input. This shouldn't block because it's small. Then close the write end, or else
// the child will hang.
writer.write_all(b"quack").unwrap();
drop(writer);
// Use `swap` to run `cat_both`. `cat_both will read "quack" from stdin
// and write it to stdout and stderr with different tags. But because we
// run it inside `swap`, the tags in the output should be backwards.
let output = Command::new(path_to_exe("swap"))
.arg(path_to_exe("cat_both"))
.stdin(reader)
.output()
.unwrap();
// Check for a clean exit.
assert!(
output.status.success(),
"child process returned {:#?}",
output
);
// Confirm that we got the right bytes.
assert_eq!(b"stderr: quack", &*output.stdout);
assert_eq!(b"stdout: quack", &*output.stderr);
}
#[test]
fn test_parent_handles_dont_close() {
// Open and close each parent pipe multiple times. If this closes the
// original, subsequent opens should fail.
let stdin = crate::dup_stdin().unwrap();
drop(stdin);
let stdin = crate::dup_stdin().unwrap();
drop(stdin);
let stdout = crate::dup_stdout().unwrap();
drop(stdout);
let stdout = crate::dup_stdout().unwrap();
drop(stdout);
let stderr = crate::dup_stderr().unwrap();
drop(stderr);
let stderr = crate::dup_stderr().unwrap();
drop(stderr);
}
#[test]
fn test_try_clone() {
let (reader, writer) = crate::pipe().unwrap();
let mut reader_clone = reader.try_clone().unwrap();
let mut writer_clone = writer.try_clone().unwrap();
// A small write won't fill the pipe buffer, so it won't block this thread.
writer_clone.write_all(b"some stuff").unwrap();
drop(writer);
drop(writer_clone);
let mut out = String::new();
reader_clone.read_to_string(&mut out).unwrap();
assert_eq!(out, "some stuff");
}
#[test]
fn test_debug() {
let (reader, writer) = crate::pipe().unwrap();
_ = format!("{:?} {:?}", reader, writer);
}
}